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A generalized approach is proposed for the structure

description of the homologous series Ga4Tim�4O2m�2 with

crystallographic shear (CS) structures based on that of rutile.

A (3 + 1)-dimensional model for an ideal CS structure is built

up in connection with the CS operation in three-dimensional

space. Its structural parameters are determined by m, the shear

plane and the shear vector. The Rietveld fitting of the X-ray

diffraction profile of Ga4Ti13O32 (m = 17) was successfully

carried out using the ideal CS structure as an initial model,

where modulation functions of atomic positions are inherently

discontinuous and sawtooth-like. The deviation of a real

structure from the ideal one was described by a few additional

Fourier terms. This method was confirmed to be efficient for

reducing the number of structural parameters required in the

refinement in comparison to the conventional three-dimen-

sional description.
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1. Introduction

The homologous series Ga4Tim�4O2m�2 (15 � m � 23, m odd)

in the system TiO2–Ga2O3 was first reported by Gibb &

Anderson (1972). Later, the phases for up to m = 31 were

observed by electron diffraction (Kamiya & Tilley, 1977).

Lloyd et al. (1976) carried out the single-crystal X-ray

diffraction analysis of Ga4Ti21O48, that is, the phase with m =

25. According to their analysis, it is certain that the structure is

a crystallographic shear (CS) structure based on that of rutile,

despite the fact that a few problems are seen in the results.

(For example, the isotropic displacement parameters of many

O atoms were negative.) It is known that such long-period

structures can be described as special modulated structures in

a superspace formalism, in which the modulation functions are

discontinuous (Elcoro et al., 2000, 2001, 2004; Boullay et al.,

2002a,b, 2003). Most of those structures can be described as

commensurately modulated structures, but an incommensu-

rate CS structure was found recently (Michiue et al., 2005).

Owing to the discontinuity of the modulation functions, their

diffraction patterns are quite different from those of the usual

modulated structures.

In the latter, the deviation from a basic structure (repre-

sented by straight lines along the fourth direction in the

superspace description) is usually small. In addition, in some

commensurately modulated structures, higher-order satellite

reflections are not observed. In many cases, we can recognize

the hierarchy of the reflection intensity, that is, the higher the

order, the weaker the intensity. It is known that the maximum

order of Fourier coefficients required in refinements is

generally equal to that of observed reflections. (Strictly, this is

the case for occupational modulation but not for displacive

modulation.) Therefore, the number of parameters necessary



in (3 + 1)-dimensional refinements of commensurate struc-

tures can be less than that in three-dimensional refinements in

such cases. On the other hand, the hierarchy of satellite

reflection intensities is broken in CS structures, suggesting that

it is difficult to reduce the number of parameters even in a

superspace approach (see Fig. 1). Nevertheless, we can reduce

the number of parameters by using an ideal CS structure in

(3 + 1)-dimensional superspace, as shown in this paper.

In the CS structures, atoms are defined in limited ranges,

which are called occupation domains. In particular, the

modulation functions of ideal CS structures in (3 + 1)-

dimensional superspace can be given by sawtooth-like func-

tions (Michiue et al., 2005). Appropriate sawtooth-like func-

tions can minimize the deviation of real modulation functions

from those of an initial model. The deviation is described by

introducing additional Fourier terms. Therefore, when it is

well expressed by a small number of Fourier terms, the

number of parameters can be reduced. The purpose of this

study is to establish a way of building such an ideal structure in

(3 + 1)-dimensional superspace in connection with the CS

operation in three-dimensional space, which is defined by the

shear plane and the shear vector. As an example, a model

building is shown for the CS structures of Ga4Tim�4O2m�2.

First, a superspace model is built up in a manner applicable to

all the phases with arbitrary m. Subsequently, the efficiency of

the model is confirmed by the refinement for X-ray diffraction

data of the phase with m = 17, Ga4Ti13O32. The advantage of

the superspace approach over the conventional three-dimen-

sional refinement will be clearly demonstrated.

2. Ideal (3 + 1)-dimensional models of CS structures

All the CS structures of the homologous series

Ga4Tim�4O2m�2 are derived from the rutile structure by the

CS operation as shown in Fig. 2 for m = 17. The shear plane

(201)r and the shear vector S = [ 1
2

1
2

1
4 ]r are independent of m,

where the subscript r represents the parent rutile structure

coordinate system. (For convenience we take b as a unique

axis for the rutile structure in this paper despite the tetragonal

unit cell of rutile.) An ideal CS structure can be obtained from

the rutile structure by the following two steps. First, some

atoms in the vicinity of shear planes are removed from the

rutile structure in Fig. 2(a). Then the structure consists of

separated blocks, as shown in Fig. 2(b). Next, each block is

displaced by the shear vector to fill the gap between the

blocks. This gives the CS structure in Fig. 2(c). This procedure

can be described in (3 + 1)-dimensional superspace so as to

generate all structures of the series in a unified form. In the

following, we show how to build up the corresponding (3 + 1)-

dimensional structures for Ga4Tim�4O2m�2. For convenience,

the shear vector S is decomposed into the two components

Sb = [0 1
2 0]r and Sac = [ 1

2 0 1
4 ]r. Using these vectors, the CS

operation can be divided into three steps: step I: removal of
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Figure 1
The simulated diffraction patterns of Ga4Ti13O32 obtained from the
results of the Rietveld refinement. (a) h0lm plane; (b) h1lm plane. The
grids show the reciprocal lattice for the average structure.

Figure 2
Projection along b of (a) a parent structure of rutile, (b) rutile blocks and
(c) the CS structure of Ga4Tim�4O2m�2. Removal of atoms in the vicinity
of the shear planes from the rutile structure of (a) gives rutile blocks in
(b). The displacement of the rutile blocks by the shear vector completes
the CS operation, resulting in the CS structure of (c).



atoms; step II: displacement of blocks by Sb or �Sb; and step

III: shifting of blocks by Sac.

In step I, we consider the structure in Fig. 2(b) as a

commensurately modulated structure. At this stage, a basic

cell is still similar to the unit cell of rutile: a = ar, b = br, c = cr

and � = 90�, where ar, br and cr are the the unit vectors of the

rutile structure. Since the direction of the wavevector is

normal to the shear plane and its (inverse) magnitude corre-

sponds to the interval of the shear planes in real (external)

space, the modulation wavevector is given by q0 = 4a*/(m + 1)

� 2c*/(m + 1). Although the space group of the parent rutile

structure is P42/mmn, the modulation introduced by the

removal of atoms reduces the symmetry. In the present case

the highest average structure symmetry becomes P2/m. Then

the basic structure contains four non-equivalent atom sites,

Ti1 (0, 0, 0), Ti2 ( 1
2,

1
2,

1
2 ), O1 (u, 0, u) and O2 ( 1

2� u, 1
2, u� 1

2), in

the unit cell. Among them, Ti2, O1 and O2 atoms near the

shear plane are removed. The ratio of removed atoms for each

site is 2/(m + 1) in the present case. Corresponding to this

operation, the modulation functions become discontinuous.

Therefore crenel functions have to be applied to modulation

functions for the occupancy of Ti2, O1 and O2 atoms. This

approach is equivalent to the use of an occupation domain

with length � = 1� 2/(m + 1). Note that the length is less than

1, and therefore there is a gap with a width of 2/(m + 1) due to

the removal of these atoms in the modulation function. As an

example, a (3 + 1)-dimensional structure of the Ti2 site is

shown in Fig. 3(a). The symmetry operations of this structure

are given by x1, x2, x3, x4;�x1, x2,�x3,�x4;�x1,�x2,�x3,�x4;

x1, �x2, x3, x4. The corresponding superspace group is

P2/m(�0�).

In step II, we consider the alternate shifts of consecutive

blocks in Fig. 2(b) by Sb and � Sb relative to the previous

block. Since the shift of blocks in Fig. 2 in three-dimensional

space corresponds to the shift of atoms in Fig. 3 along the

external space (horizontal line), this leads to the superspace

structure shown in Fig. 3(b). Then the b axis of the average

structure is halved. In this structure an atom on x2 = 1
2 is related

to another atom on x2 = 0 by the centering translation (0, 1
2, 0,

1
2 ). Thus, the fourth axis of the new unit cell is doubled.

Consequently, the modulation wavevector becomes q = q0/2 =

2a*/(m + 1) � c*/(m + 1). This leads to the symmetry opera-

tions (0, 0, 0, 0; 0, 1
2, 0, 1

2 ) + x1, x2, x3, x4; �x1, x2, �x3, �x4; �x1,

�x2, �x3, �x4; x1, �x2, x3, x4. They give the superspace group

P2/m(�1/2�) which is equivalent to P2/m(��1/2) listed in

International Tables for Crystallography (1999, Vol. C, pp. 899–

947, Table 10.3).

In step III, we consider the remaining shift by Sac. Similarly

to step II, this operation shifts the consecutive atoms along the

external space. In contrast to step II, the shift is not alternate

in this case. As a result, the fourth axis becomes oblique

relative to that in step II (Fig. 3c). This is similar to the

description of quasicrystals, where the unit vectors in a higher-

dimensional space are parallel to neither the external nor the

internal space. In the standard embedding of the modulated

structure, however, the fourth axis is taken to be parallel to the

internal space. Such an expression can be obtained by intro-

ducing the shear strain, which leaves the external space

invariant (Yamamoto, 1996; Fig. 3d). Accordingly, we have a

sawtooth-like function in the final description. Since the

rotation of atoms in Fig. 3(d) is obtained by the shear strain

and the strength of the shear strain is determined by the shear

vector Sac, the rotation angle of the atoms in Fig. 3(d) is

uniquely determined. However, the superspace group of the

resulting structure is unchanged.

The cell parameters for the ideal CS structures of any m are

given as functions of cell dimensions of rutile. Fractional

coordinates of atoms in three-dimensional space based on the

new cell deviate from those based on the old one. They can

also determine the parameters for sawtooth-like modulation

functions by lifting these into the four-dimensional unit cell.

The periods A and C along a and c (after the shear operation)

are shown in Fig. 4. They are given by A = (m + 1)ar/2 � 2Sac

and C = (m + 1)cr + 2Sac since they cross the boundary twice.

(Note that m is an odd number in the present case.) Then the

unit vectors of the average structure are defined by a = 2A/(m

+ 1), b = br and c = C/(m + 1). Therefore we have a = ar� 2�Sac

= (1 � 2�Sa)ar � 2�Sccr, c = cr � 2�Sac = �2�Saar + (1 �

2�Sc)cr, where Sa and Sc are components of the shear vector, S
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Figure 3
Modification of the (3 + 1)-dimensional structure for the Ti2 atom
according to the process of the shear operation for (a) step I (removal of
some of the atoms), (b) step II (displacement of the rutile blocks by the
vector [0 1

2 0]r) and (c) step III (displacement of the blocks by the vector [ 1
2

0 1
4 ]r). The description in (c) is equivalent to (d ) in the standard

embedding for the modulated structures.



= [Sa Sb Sc]r = [ 1
2

1
2

1
4 ]r, and � and � are the a�r and c�r components

of the modulation wavevector q; �= 2/(m + 1), � =�1/(m + 1).

The shear operation distorts the unit cell, so that the unit

vectors in the corresponding reciprocal lattice, a*, c*, are also

changed. The modulation wavevector is, however, given by q =

�a* + �c* with the same � and �.

All the three-dimensional atom positions in the block

including the origin are given by (x + lx)ar, (y + ly)br, (z+ lz)cr,

where lx, ly and lz are integers. When these positions are

written as (x1 + lx)a, (x2 + ly)b, (x3 + lz)c in terms of a, b and c,

x1 and x3 change depending on lx and lz, while x2 does not

change. Then x1 = x + 2Sat, x2 = y, x3 = z + 2Sct, where t = �(x1 +

lx) + �(x3 + lz). Therefore, at t = 0, x1 = x and x3 = z. These

positions are written as x0
1, x0

2 and x0
3, that is, x0

1 = x, x0
2 = y and

x0
3 = z. In the superspace description of modulated structures, t

modulo 1 is regarded as the fourth coordinate. Note that (x0
1,

x0
2, x0

3, 0) may not correspond to a real atom position of a

commensurately modulated structure as in the present case,

since t may not be equal to zero modulo 1 for any integers lx
and lz. We can, however, use (x0

1, x0
2, x0

3, 0) to specify the

position of the occupation domain. As shown in Appendix A,

the above relations led us to conclude that the deviations from

x0
1 and x0

3 depend linearly on x04 = �(x0
1 + lx) + �(x0

3 + lz) with the

coefficients given by the shear vector components: x1 � x0
1 =

2Sax04/D and x3 � x0
3 = 2Scx04/D (D = 1 � 2�Sa � 2�Sc). This is

the origin of the amplitude of the sawtooth-like modulation

functions.

All the parameters including the modulation functions are

listed in Table 1. The definition of each parameter is similar to

the corresponding definition in our previous work (Michiue et

al., 2005). (Since the ratio of Ti4+ to O2� ions removed from

the parent structure in step I is Ti:O = 1:4, negative charges of

TiO4�
4 should be compensated by the substitution of Ga3+ ions

for some of the Ti4+ ions. Therefore, the metal sites Ti1 and Ti2

were renamed M1 and M2 in the table.) Atoms M1, M2, O1

and O2 pass through (0, 0, 0, 0), ( 1
2,

1
2,

1
2, 0), (u, 0, u, 0), and (1

2 �

u, 1
2, u� 1

2, 0), respectively. From their site symmetry, the length

of the occupation domain from these points should be the

same for both sides in M1 and M2, while it can be different

from one side to the other in O1 and O2. The length for each

side is chosen so that the external space passes through the

center of the gap. This criterion requires asymmetric occupa-

tion domains around (u, 0, u, 0) for O1 and ( 1
2 � u, 1

2, u� 1
2, 0)

for O2. When we specify the center of the occupation domain,

x4
0 deviates from zero for O1 and O2. Consequently, the first

and third coordinates of O1 and O2 in Table 1 also deviate a

little from (u, 0, u) and ( 1
2 � u, 1

2, u � 1
2 ), respectively.

Obviously, when m is large enough, u1, u3, v1 and v3 in the

table approximate to u, u, 1
2 � u, and u � 1

2, respectively. Thus,

the basic cell and sawtooth parameters for the ideal CS

structures in the present homologous series are unambigu-

ously given by the shear plane and the shear vector. It should

be noted that the structure of commensurately modulated

structures depends on the choice of three-dimensional

hyperplane. The three-dimensional section should be switched
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Figure 4
Relations between the basic cell of the ideal CS structure and the unit cell
of rutile. a and c are axes for the ideal CS structure, while ar and cr are
those for rutile.

Table 1
Crystallographic data and structural parameters for the ideal CS structure
of Ga4Tim�4O2m�2.

Monoclinic, P2/m(�1/2�)
a = [(1 � 2�Sa)2 + (2�Sc)

2]1/2ar = [(m2
� 2m + 2)1/2/(m + 1)]ar

b = br

c = [(2�Sa)2 + (1 � 2�Sc)
2]1/2cr = [(4m2 + 12m + 13)1/2/2(m + 1)]cr

� = cos�1(a�c/ac) = cos�1[�5/(m2
� 2m + 2)1/2(4m2 + 12m + 13)1/2]

q = �a* + �c* = [Pa/(m + 1)]a* + [Pc/(m + 1)]c*

x0
1 x0

2 x0
3 x0

4 �

M1 (Ti/Ga) 0 0 0 0 1/2
M2 (Ti/Ga) 0.5 0.5 0.5 0 1/2 � 1/(m + 1)
O1 u1 0 u3 �x0

1 + �x0
3 � (1/2 � �)/2 1/2 � 1/(m + 1)

O2 v1 0.5 v3 �x0
1 + �x0

3 � (1/2 � �)/2 1/2 � 1/(m + 1)

For all atoms
Vx1 = �Sa/D
Vx2 = 0
Vx3 = �Sc/D

ar , br , cr: cell dimensions of rutile. Pa, Pc: components of the shear plane (Pa 0 Pc) =
(201)r, which are correlated to the modulation wavevector q = (� 0 �) by (m + 1)q =
(Pa 0 Pc), or � = Pa/(m + 1) = 2/(m + 1), � = Pc/(m + 1) =�1/(m + 1). Sa, Sc: components
of the shear vector, [Sa

1
2 Sc] = [ 1

2
1
2

1
4 ]r. The sawtooth-like function is defined by uxi =

(2Vxi/�)(x4 � x0
4). D = 1 � 2�Sa � 2�Sc. u1 = {[1 + 2(Sa � Sc)�]u � Sa( 1

2 � �)}/D =
[(2m + 1)u� 1]/(2m� 1). u3 = {[1 + 2(Sa � Sc)�]u� Sc(

1
2��)}/D = (4mu� 1)/2(2m�

1). v1 = {[1� 2(Sa + Sc)�](1
2� u)� Sa(1

2��)}/D = [(2m + 3)(1
2� u)� 1]/(2m� 1). v3 =

{[1 � 2(Sa + Sc)�](u � 1
2) � Sc(

1
2 � �)}/D = [4m(u � 1

2) � 1]/2(2m � 1). u (= 0.305):
fractional coordinate for x and z of an O atom in the rutile structure.



according to m; t 0 = 0 for m = 4n + 1 [modulo 1/(m + 1)] (n=

integer) and t0 = 1/2(m + 1) [modulo 1/(m + 1)] for m = 4n + 3

as is usually seen in the superspace description of homologous

series. It is remarkable that Table 1 is applicable to incom-

mensurate structures when m becomes an irrational number,

because the closeness condition (Cornier-Quiquandon et al.,

1992) is fulfilled even in this case, as mentioned by Elcoro et al.

(2003).

3. Structure refinement of Ga4Ti13O32

As an example of the application of the above theory, the

structure refinement of Ga4Ti13O32 has been performed, thus

demonstrating that the structure can be well determined by

parameters less than those in conventional refinements.

3.1. Experimental

We were unable to obtain single crystals suitable for the

intensity measurement. (Actually, a single crystal used by

Lloyd et al., 1976, contained the adjacent phase of m = 23, and

all the reflections from the second phase were removed in

their refinement.) Therefore, we prepared powder samples

and employed the Rietveld method. Powder samples of

Ga4Ti13O32 were prepared by a solid-state reaction. TiO2 and

Ga2O3 heated at 1273 K for 1 d were mixed in a molar ratio of

TiO2:Ga2O3 = 13:2 using an agate mortar in ethanol. The

mixture was heated in a platinum tube at 1723 K for 4 d and

then cooled to room temperature. After grinding, the sample

was reheated at 1723 K for 5 d. X-ray diffraction data were

collected using a high-resolution diffractometer with Debye–

Scherer geometry installed at the BL-15XU beamline at

SPring-8. The specimen was sealed into a quartz capillary tube

with an inner diameter of 0.5 mm. The measurement was

carried out with a wavelength of 0.8 Å in a 2� range between 4

and 80�, with a step interval of 0.004�. The structure was

refined by Rietveld profile fitting using JANA2000 (Petricek et

al., 2000). Crystallographic data and conditions for the

refinement are summarized in Table 2.1

3.2. Results

According to previous studies for rutile summarized by

Howard et al. (1991), cell dimensions of ar = cr = 4.594, br =

2.959 Å were used to calculate a basic cell for an ideal CS

structure of a phase with m = 17, Ga4Ti13O32; a = 4.092, b =

2.959, c = 4.729 Å, � = 90.48�. Parameters for ideal modulation

functions were obtained from Table 1. In an initial stage, all

structural parameters except for cell parameters and the scale

factor were fixed at initial values, and the remaining para-

meters (the background, peak profile etc.) were refined. The

modulation for the occupation factor of metal ions, repre-

senting the replacement of Ti and Ga, was not considered yet.

Namely, occupation ratios were fixed at Ga/Ti = 4/13 for all the

metal sites. At this stage, the reliability factors were Rp = 0.142

and Rwp = 0.209. The deviations of refined cell parameters

from the ideal values were�0.05, 0.56, 0.14 and 0.21% for a, b,

c and �, respectively.

In the next step this model was modified. The local structure

in the vicinity of the boundary (shear plane) is basically

identical to that seen in the �-Ga2O3 structure (Geller, 1960).

In the course of the refinement, it has been proved that metal

sites in this part should be treated as independent sites rather

than those included in the M1 and M2 sites; otherwise,

modulation functions were locally perturbed near the edges of

the occupation domains and required higher-order additional

Fourier terms. A part of the M1 site is a tetrahedral site, which

is to be fully occupied by the Ga ion. Therefore, the occupa-

tion domain of M1 was divided into two parts to give two non-

equivalent sites in the basic structure; one is the tetrahedral

site allotted to the Ga ion, and the other forms an octahedral

coordination. Thus, a part of the occupation domain, with the

length 2/(m + 1) = 1/9, of the M1 site was removed, and instead

a new metal site, M10, with a width 1/(m + 1) = 1/18 was added.

The parameter x0
4 of the M10 site is chosen at x0

4 = �x0
1 + �x0

3 +

(�M1 + �M10)/2 = x0
1/9 � x0

3/18 + 2/9, so that the occupation

domains of the two sites are just connected to each other in the

projection on to the fourth axis. Similarly, parts of the occu-

pation domain of the M2, O1, and O2 sites were separated and

treated as new non-equivalent sites M20, O10, O100, O20 and

O200. The Ga ions are expected to be more concentrated at the

M20 site than at M2. Fourier terms were then introduced for

modulation functions of the atomic positions for the M1, M2,

O1 and O2 sites. Sawtooth parameters were fixed at the ideal

values in order to prevent correlations between the sawtooth-

like function and Fourier terms. The orthogonization was

unnecessary in the refinement applying Fourier terms up to

the second order for atoms M1 and M2, and the first order for

atoms O1 and O2. The occupation ratios for the metal sites

were refined imposing the constraint condition so as to keep

the Ga/Ti ratio of the whole structure at 4/13. The modulations

for displacement parameters were not taken into account for

all the sites. The final structural parameters are listed in

Table 3. Metal–oxygen distances and bond-valence sums at
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Table 2
Crystallographic data and conditions for refinement of Ga4Ti13O32.

Crystal data
Chemical formula Ga0.444O3.556Ti1.444

Mr 157
Cell setting, superspace group Monoclinic, P2=mð� 1=2 �Þ
Temperature (K) 295
a, b, c (Å) 4.09045 (2), 2.97554 (1), 4.73593 (2)
� (�) 90.2935 (2)
q (= �a* + �c*) a*/9 � c*/18
Z 1
Dx (Mg m�3) 4.52
Radiation type Synchrotron

Refinement
R factors Rp = 0.065, Rwp = 0.094, Robs = 0.040,

wRobs = 0.039
Profile function Pseudo-Voigt
No. of parameters 78
No. of structural parameters 45

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: CK5017). Services for accessing these data are described
at the back of the journal.



metal sites were within normal ranges. (The projection of the

refined three-dimensional structure is quite similar to Fig. 2c,

so the figures of the refined structure were omitted.) Final

modulation functions for the x and z coordinates are shown in

Fig. 5. As is clear from the figure, the modulation functions are

almost straight, indicating that their deviation from the

sawtooth-like functions assumed in the ideal model is very

small. This ensures the smooth convergence of the least-

squares refinement.

In order to confirm the validity of the above refinement, we

performed the refinement with the same data by the

conventional technique. In this method, nine metal sites and

16 O atoms are non-equivalent in a unit cell of a0 = 34.113, b0 =

2.976, c0 = 10.298 Å, �0 = 96.989 � under the space group C2/m.

(a0 = �8a + 2c, b0 = �b, c0 = a + 2c.) As one metal site is at the

origin and others are on the mirror plane (x, 0, z), 48 para-

meters are necessary for fractional coordinates. In addition,

isotropic displacement parameters for all sites (25 parameters)

and occupation factors of metal sites (seven parameters),

except for a tetrahedral site fully occupied by the Ga ion, were

refined with a constraint condition so that the Ga/Ti ratio in

the whole structure is kept at 4/13. Thus, in total, 81 structural

parameters including the scale factor were used in the

refinements. The reliability factors Rp = 0.064 and Rwp = 0.094

were almost the same as those of the superspace description

using 45 structural parameters.

4. Discussion

We consider another possibility in the modeling, since a

detailed model has several possibilities. If M10, M20, O10, O100,

O20 and O200 are included in the M1, M2, O1 and O2 sites of

the rutile-like domain, the perturbation of modulation func-

tions is expected to be locally prominent near the edges of

occupation domains, because the deviation from the ideal

structure is remarkable near the boundary. Such functions

require higher-order coefficients of additional Fourier terms.

On the other hand, the removal of the edge parts reduces the

order of coefficients required for the modulation functions of

the domain parts. In this treatment, however, additional

parameters are necessary since the separated parts are

considered as independent atoms. Therefore, the number of

parameters to be refined is roughly equal in the two cases, and

the choice of each model may be possible in general. It is

obvious that the larger the thickness of the domain (i.e. the

larger m), the better the latter model is. In the present case of

m = 17, better results were obtained by separating the metal

sites. This is partly because the Ga ions are concentrated at the

boundary regions.

In addition to the embedding employed in the present

analysis, the description in Fig. 3(c) suggests an alternative

description for the same CS structure. This situation is similar

to that for quasicrystals, where the occupation domain is

parallel to the internal space, and suggests that the CS struc-

tures are rather similar to quasicrystals in the higher-dimen-

sional description. This description gives an equivalent

embedding for the same structure but a non-standard one for

the modulated structures. Since this is not familiar as a
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Figure 5
Deviations for x and z coordinates as a function of t 0 (= x4 � q�rj). The
solid and dotted lines show the modulation functions with and without
the Fourier terms, respectively.

Table 3
Structural parameters for Ga4Ti13O32.

x0
1 x0

2 x0
3 x0

4 � Uiso

M1 0 0 0 0 7/18 0.0093 (4)
M10 0.1363 (5) 0 0.1050 (4) 0.23153 (6) 1/18 0.0118 (6)
M2 0.5 0.5 0.5 0 1/3 0.0095 (4)
M20 0.6738 (6) 0.5 0.5838 (5) 0.20910 (7) 1/18 0.0045 (7)
O1 0.301 (7) 0 0.311 (5) �0.0116 (8) 1/3 0.0041 (6)
O10 0.055 (2) 0 0.267 (2) �0.2309 (3) 1/18 0.002 (2)
O10 0 0.456 (3) 0 0.390 (2) 0.1957 (3) 1/18 0.013 (3)
O2 0.219 (7) 0.5 �0.178 (5) 0.0064 (8) 1/3 0.0080 (7)
O20 0.003 (3) 0.5 �0.291 (2) �0.2057 (3) 1/18 0.009 (3)
O20 0 0.415 (3) 0.5 �0.076 (2) 0.2170 (3) 1/18 0.019 (3)

x1 x2 x3

M1 V 7/33 0 7/66
Us

1 �0.050 (3) 0 �0.018 (3)
Us

2 0.025 (2) 0 0.006 (2)

M2 V 2/11 0 1/11
Us

1 �0.025 (6) 0 0.028 (5)
Us

2 0.004 (4) 0 �0.018 (3)

O1 V 2/11 0 1/11
Us

1 �0.0102 (18) 0 �0.0104 (15)
Uc

1 �0.020 (7) 0 �0.010 (6)

O2 V 2/11 0 1/11
Us

1 �0.0087 (18) 0 �0.0131 (14)
Uc

1 �0.017 (7) 0 �0.010 (6)

The Ti/Ga ratio is 0.965 (5)/0.035 (5), 0.919 (6)/0.081 (6) and 0.63 (2)/0.37 (2) at M1, M2
and M20 , respectively. M10 is fully occupied by Ga. V is 0 for x1, x2, x3 at M10 , M20 , O10 ,
O10 0 , O20 and O20 0 . Constraint conditions between xo

1 , x0
3 and x0

4 were imposed as
follows: M10 : x0

4 ¼ �x0
4 þ 2=9; M20 : x0

4 ¼ �x0
4 þ 1=6; O1: x0

4 ¼ �x0
4 � 1=36; O10 :

x0
4 ¼ �x0

4 � 2=9; O10 0 : x0
4 ¼ �x0

4 þ 1=6; O2: x0
4 ¼ �x0

4 � 1=36; O20 : x0
4 ¼ �x0

4 � 2=9;
O20 0 : x0

4 ¼ �x0
4 þ 1=6; �x0

4 ¼ x0
1=9� x0

3=18.



description of aperiodic crystals with crystallographic

symmetry, we briefly discuss the relation between the standard

embedding and the non-standard one.

In Fig. 3(c), the fourth axis is not parallel to the internal

space but has a and c components. As mentioned in x2, these

are related to the shear strain, which leaves the external space

invariant. In the reciprocal space, the corresponding shear

strain leaves the internal space invariant. As a result, in the

non-standard embedding, the diffraction vector moves in

parallel to the internal space by the shear strain. Therefore,

the first three unit vectors in the four-dimensional reciprocal

lattice, which were taken on the external space in the standard

embedding, have internal space components. These two

different descriptions give the same structure factor for the

same reflection for the following simple reason. Since this is

given by the Fourier integral of the electron density within the

four-dimensional unit cell, and the inner product of the

diffraction vector and the positional vector in four-dimen-

sional space is invariant under such shear strain, the structure

factor gives the same value (Yamamoto, 1996).

It is noted that even in this non-standard embedding we can

choose a fourth vector that has no a component, as is clear

from Fig. 3(c). When we take the fourth axis parallel to the

internal space, the a axis of the average structure is halved and

we have a C-centered lattice. As a result, the (3 + 1)-dimen-

sional superspace group has the centering translations (0, 0, 0,

0), ( 1
2,

1
2, 0, 1

2 ), leading to the superspace group C2/m(�1�).

[This is equivalent to B2/m(��0) in International Tables for

Crystallography (1999, Vol. C, pp. 899–947, No. 12.1). In this

setting, the wavevector q0 = q � a* is used.] This corresponds

to the choice of an alternating shear vector Sa and�Sa, similar

to the case of the shear vector along b in the method discussed

in x2. The consideration analogous to that in x2 leads to the

corresponding embedding with this superspace group. It

should be noted that this description is applicable only when

Sa = 1/2. The superspace group C2/m(�1�) is not equivalent to

P2/m(�1/2�) as the superspace group, but they are equivalent

as the four-dimensional space group. This suggests that the

superspace group is inappropriate to specify the symmetry of

CS structures as in the composite crystals, where the symmetry

can be specified by a combination of several (usually two)

superspace groups (Yamamoto, 1993) or simply by an n-

dimensional (n > 3) space group.

5. Concluding remarks

It was shown that the CS structures in the homologous series

Ga4Tim�4O2m�2 are well described as modulated structures. A

(3 + 1)-dimensional model for the ideal CS structures is

unambiguously built up in connection with the shear opera-

tion in three-dimensional space. A basic cell for each phase is

related to the unit cell of rutile. The shear operation leads to

discontinuous and sawtooth-like modulation functions of

atomic positions. It was also shown that their modulation

wavevectors and sawtooth parameters are determined by m,

together with the shear plane and the shear vector. The

structure refinement can be carried out using this ideal CS

model as an initial structure. Therefore, all the ideal structures

in the series can be determined by the three-dimensional

structure of one example and lattice parameters and chemical

composition of the others. The deviation of a real structure

from an ideal one can be considered by a small number of

additional Fourier terms, giving the possibility of the structure

analyses with a smaller number of parameters. The present

method provides, therefore, a systematic and convenient

method of structure determination in the series of compounds.

Its efficiency has been demonstrated by the Rietveld analysis

of Ga4Ti13O32 (m = 17). Although the results from the

conventional three-dimensional refinement give essentially

the same results as those of the present method, the number of

parameters used in the present method is much smaller than

that in the conventional one. This suggests that in the

conventional method, many parameters are highly correlated

and redundant parameters are included. Obviously, the

advantage of the superspace approach is more important for

the phases with a larger m. We confirmed the efficiency of the

present method only for Ga4Tim�4O2m�2, but the approach

will be applicable to any homologous series of other CS

structures after minor modifications and will be equally effi-

cient for those series.

APPENDIX A

For the deviation of the first and third coordinates from those

of the parent structure, the expressions (x1 � x0
1) = 2Sa(�x4 +

x04) and (x3 � x0
3) = 2Sc(�x4 + x04), where �x4 = �(x1 � x0

1) +

�(x3 � x0
3) and x04 = �(x0

1 + lx) + �(x0
3 + lz) apply. These are

written as

1� 2�Sa �2�Sa

�2�Sc 1� 2�Sc

� �
x1 � x0

1

x3 � x0
3

� �
¼

2Sax04
2Scx04

� �
: ð1Þ

This leads to

x1 � x0
1

x3 � x0
3

� �
¼

1

D

1� 2�Sc 2�Sa

2�Sc 1� 2�Sa

� �
2Sax04
2Scx04

� �
; ð2Þ

where D = 1 � 2�Sa � 2�Sc. Therefore, we have x1 � x0
1 =

2Sax04/D and x3 � x0
3 = 2Scx04/D.

References

Boullay, P., Teneze, N., Trolliard, G., Mercurio, D. & Perez-Mato, J. M.
(2003). J. Solid State Chem. 174, 209–222.

Boullay, P., Trolliard, G., Mercurio, D., Perez-Mato, J. M. & Elcoro, L.
(2002a). J. Solid State Chem. 164, 252–260.

Boullay, P., Trolliard, G., Mercurio, D., Perez-Mato, J. M. & Elcoro, L.
(2002b). J. Solid State Chem. 164, 261–271.

Cornier-Quiquandon, M., Gratias, D. & Katz, A. (1992). Methods of
Structural Analysis of Modulated Structures and Quasicrystals,
edited by J. M. Perez-Mato, F. J. Zuniga & G. Madariaga, pp. 313–
332. Singapore: World Scientific.

Elcoro, L., Perez-Mato, J. M., Darriet, J. & El Abed, A. (2003). Acta
Cryst. B59, 217–233.

Elcoro, L., Perez-Mato, J. M. & Withers, R. L. (2000). Z. Kristallogr.
215, 727–739.

research papers

Acta Cryst. (2006). B62, 737–744 Yuichi Michiue et al. � Superspace description of Ga4Tim�4O2m�2 743



Elcoro, L., Perez-Mato, J. M. & Withers, R. L. (2001). Acta Cryst. B57,
471–484.

Elcoro, L., Zuniga, F. J. & Perez-Mato, J. M. (2004). Acta Cryst. B60,
21–31.

Geller, S. (1960). J. Chem. Phys. 33, 676–684.
Gibb, R. M. & Anderson, J. S. (1972). J. Solid State Chem. 5, 212–

225.
Howard, C. J., Sabine, T. M. & Dickson, F. (1991). Acta Cryst. B47,

462–468.

Kamiya, S. & Tilley, R. J. D. (1977). J. Solid State Chem. 22, 205–216.
Lloyd, D. J., Grey, I. E. & Bursill, L. A. (1976). Acta Cryst. B32, 1756–

1761.
Michiue, Y., Yamamoto, A., Onoda, M., Sato, A., Akashi, T., Yamane,

H. & Goto, T. (2005). Acta Cryst. B61, 145–153.
Petricek, V., Dusek, M. & Palatinus, L. (2000). JANA2000. Institute

of Physics, Prague, Czech Republic.
Yamamoto, A. (1993). Acta Cryst. A49, 831–846.
Yamamoto, A. (1996). Acta Cryst. A52, 509–560.

research papers

744 Yuichi Michiue et al. � Superspace description of Ga4Tim�4O2m�2 Acta Cryst. (2006). B62, 737–744


